8-920-269-77-07
 

 
 
 
 
 
Какими будут процессоры в 2012 году!

      Сегодня компьютерный мир стоит на пороге революции: CPU с транзисторами нового поколения и мощные мобильные чипы на порядок увеличат производительность ноутбуков, планшетов и смартфонов.

      Процессорные элементы размером 10 и 12 нм в наступающем году полностью изменят компьютерный мир: по толщине они в 10 000 раз меньше человеческого волоса (100 000 нм), а по диаметру приближаются к атомам кремния (0,3 нм). В следующем году компания Intel начнет производство 22-нанометровых транзисторов (ранее использовался техпроцесс 32 нм) для своих новых чипов, а лицензированные ARM-процессоры будут состоять из транзисторов, изготовленных уже по стандарту 28, а не 40 нм. За этой разницей в 10 и 12 нм скрываются высокотехнологические инновации, которые способны удвоить производительность современных ПК, планшетов и смартфонов.

      Процессорные элементы размером 10 и 12 нм в наступающем году полностью изменят компьютерный мир: по толщине они в 10 000 раз меньше человеческого волоса (100 000 нм), а по диаметру приближаются к атомам кремния (0,3 нм). В следующем году компания Intel начнет производство 22-нанометровых транзисторов (ранее использовался техпроцесс 32 нм) для своих новых чипов, а лицензированные ARM-процессоры будут состоять из транзисторов, изготовленных уже по стандарту 28, а не 40 нм. За этой разницей в 10 и 12 нм скрываются высокотехнологические инновации, которые способны удвоить производительность современных ПК, планшетов и смартфонов.


Чем меньше транзистор, тем выше скорость

      Любой современный процессор состоит из транзисторов. До настоящего момента считалось, что чем они меньше, тем быстрее чип выполняет вычисления. Сегодня производители используют транзисторы шириной 32 нм. Однако чем они миниатюрнее, тем больше подвержены квантовомеханическому эффекту, который негативно сказывается на их работе. Таким образом, для того чтобы транзисторы размером 22 нм работали без сбоев, необходимо изменить их структуру. Современный транзистор состоит из двух электродов (истока и стока), а также управляющего электрода — затвора. Истоки сток разделены подложкой, которая служит для изоляции. Все три компонента (сток, исток и затвор) изготавливаются из кремния, в котором содержится незначительное количество примесных атомов. В стоке и истоке это фосфор или мышьяк. В этих атомах на один электрон больше, чем в кремниевых, и имен но он, свободно передвигаясь, проводит ток (легирование донорной примесью). Подложка же обогащается бором или алюминием, у которых отсутствует один электрон (легирование акцепторной примесью). Таким образом, между кремнием p- и n-типа возникает обедненный слой, который блокирует движение электронов. Если к затвору приложить напряжение, в обедненной зоне откроется канал, по которому электроны перемещаются от истока к стоку, в результате чего транзистор переключается. При прекращении подачи напряжения на затвор транзистор остается включенным, но при этом не потребляет электроэнергию. Однако чем меньше элементы, тем сложнее осуществляется данный процесс, и в современных транзисторах ток проходит даже в том случае, если они выключены.

Cовременные строительные технологии кровли

Почему косметические средства важны для ухода за кожей


Утечка тока влияет на скорость работы чипа

      Эти утечки в настоящее время ответственны почти за половину всей потребляемой процессором энергии. Ее доля растет экспоненциально — с уменьшением размера транзисторов. Устранение утечки — задача не из простых, так как электрические поля стока и истока влияют на электропроводность подложки. Кроме того, поле стока бывает настолько сильным, что в значительной степени снижает влияние затвора на канал, в результате чего он остается открытым и по нему проходят электроны, даже если на затвор не подается напряжение. Наряду с DIBL-эффектом (Drain Induced Barier Lowering — по нижение потенциального барьера, обусловленное стоком) все больше проявляется эффект тоннеля: если барьер слишком слаб, то повышается вероятность, что электрон его преодолеет и, пройдя, словно по тоннелю, окажется на другой стороне. При миниатюризации транзисторов уменьшается и барьер между компонентами. Электроны затвора проходят сквозь подзатворный изолятор-диэлектрик, а также от истока и стока в подложку. При этом основная доля утечек тока приходится на электроны затвора. Возросшее энергопотребление, вызванное явлениями DIBL и эффектом тоннеля, можно преодолеть, восстановив контроль затвора над каналом. Производители чипов в последние годы предложили три способа решения данной проблемы.


Трехмерная структура изолирует транзисторы

      Сначала предпринимались попытки совершенствования изоляционного слоя между затвором и каналом. Компания Intel много сделала для улучшения характеристик транзисторов и снижения токов утечек — речь идет о применении технологии напряженного кремния и внедрении затвора с высокой диэлектрической проницаемостью. Затем Intel заменила материал своих 45-нанометровых чипов, начав использовать сплав гафния вместо оксида кремния. Данный материал обеспечивает более интенсивное влияние поля затвора на канал и имеет большую толщину, благодаря чему эффект тоннеля снижается. Но для 32-нанометровых элементов этого недостаточно, и производители пытаются изолировать канал от остальных компонентов транзистора. Для этого необходимо менять существующую десятилетиями структуру и использовать трехмерную архитектуру: в новых решениях от компании Intel под кодовым именем Tri-Gate, имеющих трехмерное строение, канал вырос в высоту. Затвор окружает его с трех сторон и обладает большей площадью влияния. Это снижает ток утечки и обеспечивает более высокий контроль движения электронов от истока к стоку. Кроме того, отпадает необходимость в легировании канала, благодаря чему электроны пересекают его без каких-либо препятствий и скоростных потерь, поэтому транзистор переключается быстрее. Начиная с 2012 года Intel намерена использовать транзисторы c трехмерной структурой в процессорах нового поколения на базе микроархитектуры Ivy Bridge. Компания заявляет, что чипы на базе новых транзисторов при такой же производительности потребляют на 50% меньше электроэнергии, чем процессоры Intel Sandy Bridge, или при равном энергопотреблении переключаются на 37% быстрее. Более короткое время переключения означает, что процессор в целом работает на 58% быстрее.

      Стоит отметить, что конкуренты пока еще не освоили сложное производство транзисторов с трехмерной структурой. Так, самый крупный независимый производитель чипов — компания TSMC, выпускающая, в частности, большое количество ARM-процессоров, намерена осуществить переход на данную технологию только после принятия норм 14-нанометрового техпроцесса, то есть не ранее 2014 года. AMD и IBM пытаются справиться с проблемой утечки тока иным образом: вместо использования трехмерной структуры канала они намерены изолировать его от подложки. В транзисторах FDSOI (Fully Depleted Silicon On Insulator — технология обедненного кремния) между каналом и подложкой размещается слой оксида кремния. Благодаря этому негативное воздействие таких эффектов, как DIBL, перестает играть существенную роль, а сам канал также не нуждается в легированных носителях заряда. Однако, в отличие от новых чипов Intel с решениями Tri-Gate, производство которых уже начато, подложки с транзисторами FDSOI для чипов AMD достигнут своей серийной зрелости не ранее 2012–2013 года.

 

8-920-269-77-07

kompkursk.far.ru